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CHAPTER 1: Complex Numbers
EXERCISES 1.1: The Algebra of Complex Numbers

1. —i=a+bi=>ae¢=0andb=-1=>

(—4)? = (a® — B?) + (2ab)i = —b* = -1

2. The Commutative and Associative laws for addition follow directly
from the real counterparts.
Commutative law for multiplication:

(a + bi)(c + di) (ac — bd) + (bc + ad):
(ca — db) + (da + cb)i
(c+ di)(a + bi)

Associative law for multiplication:

[(a + bi)(c + di))(e + fi) = [(ac — bd) + (bc + ad)i](e + f7)
[(ac — bd)e — (be + ad) f] + [(bc + ad)e + (ac — bd) f]:
[a(ce — df) — b(de + cf)] + [b(ce — df) + a(de + cf)}i
(a + bi)[(ce — df) + (de + cf)i]

(a +bi){(c-+ die + £

Distributive law:

(a+ bi)[(c+ di) + (e + fi)] = (a + bE)[(c + &) + (d + f)i]
= [a(c+e)—b(d+ )]+ [b(c+e) +a(d+ f):
= [(ac— bd) + (bc + ad)i] + (ae — bf) + (be + af)i]

= (a+bi)(c+ di)+ (a + bi)(e + fi)

3. ad. 23= 29— 2 &>
e+fi=(c—a)+(d-Db)i=(c+di)—(a+b) <=
e=c—aand f=d-b <<
e+a=cand f+b=d <
(e+ fi)+(a+b)=c+di <



b. (e+ fi)(c+di)=a+b <=
ce—fd=aand fc+ed=b <=

a+b ac+bd bc—ad. _
c+di c2+d2+c2+d22’ ctid#0
(ec — fd)c+ (fe+ ed)d

e + d2
+ (fc+ed)c-—(ec-—fd)di
2+ d2
= e+ ft
4. Suppose z; # 0. Then 22=ﬁ§=£=0_
Z1 2
3. -3.
5. a. 0+<—§)Z-——2—Z
b. 3+0:=3

6. a 0+ (=2)=-2
b. 6+ (=3)i=6-3:
c.4+m

7. a. 8+4+1i=8+:

b.14+1li=1+4:
8 82

°~°+(“§r)z=‘3

B 81,
25 25

o, BL_ 107

185 185
253 204 .

10. — 71995 ~ 135"

11. 24 0: =2
12. =9+ (=7)



13. 6+ 5t
14. z=a + bi. Re(iz) = Re(ai — b) = -b= -Im =

15. % = (i) =1k =1
gl gtk =] .=
A2 ik 2 =1 (=1) = -1
i"""3=i"‘-i3=l-(—i)=—i

16. a. —
b. -1
c. -1
d. —

17. 32043 | 633 4 gi—5(4) | j-1(4)+3
= 3(—i) + 6(—i) + 8(1) + (~i) =8 — 10

18. (142 +2(-1+i)+2=-2i+(-2+2)+2=0
19. The real equations are
Re(2® +52%) = Re(z+ 3i)
Im(z® +52%) = Im(z+ 3i).
If z = a + bi these can be rewritten as

a®—3ab? +5a2 -5 —a=0
3a2b -2+ 10ab—-5-3=0.

4
20. = —= =21
0. a.z % z
bz_l—-Sz_Zz _§_z_
YT 25" 20 29
1
#=0 -3+3
d. z=214:

l/%



21 (=9)[(1 = 4)z1 + 3z5) + (1 = §)[izy + (1 4 24)zy)
= —1(2 — 31) +:(31 —)(1)

==>22=—_ =—1=z1=1+41

3—2:
22.0=2"-16=(z2-2)(2 + 2)(z — 20)(2 + 2%) => z = 2,-2, 2, —2i
23. Suppose z = a + bs.
1 a—1b a
Re(?) =Re(a2+b2) TR

whenever a > 0.

24. Suppose z = a + bi.

Im(l) = Im (0
) T M\eEre T are

< 0 whenever b > 0.

“ETF
25. Let 23 = a +bi and 2, = ¢+ di. The hypotheses specify that a + ¢ < 0,
- b+d=0,ac—-bd <0, and ad + bc = 0.
b=0=d=0=> 2z and z, are real.
b# 0= d=—band ad + bc = a(—b) + bd = —bla—c)=0
= a = ¢, a contradiction of the fact that z;z, < 0.

26. By induction: The case when n = 1 is obvious. Assume
Re(z_’;‘:l Zj) = 2_7=, Re(z;) for all positive integers m < n

n ) n-1
Re (E zj) = Re (Z z; + zn)
Jj=1 j=1

= nX_:l Re(z;) + Re(z2,)

=1
n
= D Re(z;)
=1
The corresponding result for the imaginary parts follows by replacing
“Re” by “Im” in the above proof.



Disprove: Re | [ z,-) = [] Re(z;) and

J=1 i=1

Im Ii z,.) = ]zI1 Im(z;).

Re[(a + b)(c + di)] = ac — bd
Re(a + bi) Re(c + di) = ac
These are not equal whenever bd # 0.

Im[(a + bi)(c + di)] = ad + b

Im(a + b) Im(c + di) = bd

These are not equal whenever ad + bc # bd.
(For example, consider the pair 2 and :.)

27. By induction: The case when n =1 is obvious. Assume

(21 + 22)m = z{“ + (T)Zi"-122 + .-

+ (',':) T TR

for all positive integers m < n. Recall that, for positive integers r and
s withr > s,

() ()= (3) = (- ()-

(21 + 22)": (21 -+ Zz)"_l(zl + Zg)

n-—1
=27 Yz + 22) + z{"zzg(zl + 25)

1
-1
+ et ("k ) P gz + 22)
+ -+ 237 (2 + zz)
R T T e [ e

-1 -
- ( \l( nkk 4 o0 (k+1)z§+1)+ st 2Pz 4 2]



28.

29.

30.

31.

2° 4 (‘;’)24(4) + (2)23(-2')2 + (2)22(—-i)3+ (Z)z(_i)‘* T (=)
=32 —-80: — 80 +40; + 10 — : = —38 — 414

Suppose z = g, where p and ¢ are relatively prime integers, and that
z2 =2

2
(2) =2 = p’ = 2¢* = p? = 4k for some integer k and ¢* = 2k,

q
a contradiction (If p? is an even integer so is p.).

By contradiction. Suppose there is a nonempty subset P of the complex
numbers satisfying (i), (ii), and (iii) and suppose i is in P.

Then, by (iii), i> = —1 and (~1)i = —i. This violates (i).

Similarly (i) is violated by assuming —: belongs to P.

Purpose: to add, subtract, multiply and divide z; = a + b and
29 = ¢+ dt.

Input a,b,c,d

Set sum= (a + ¢, b+ d)

Print “21 4+ 22 = ”; sum

Set diff=(a — ¢, b - d)

Print “z1 — 22 = 7; diff

Set prod=(a*c—b*d,b*c+a*d)



Print “z1 % 22 = ”; prod

Set denom = ¢"2 +d"2

If denom = 0, print “there is no quotient”

Else
Set quot=((a * ¢ + b* d)/(denom), (b*c—ax* d)/(denom))
Print “z1/22 = "; quot

Endif

Stop

32. prod=(a*c—bx*d, (a+b)*(c+d)—a*c— bxd)
EXERCISES 1.2: Point Representation of Complex Numbers;
Absolute Value and Complex Conjugates

1. The real and imaginary parts of

ntzn Ttz ity
3~z U2

give the familiar algebra formula for the midpoint of the line segment
joining two points in R2.

Alternatively, one could establish that (z; + 2;)/2 is a point on the line
through 2 and 2, and that |z — (21 + 22)/2| = |2z — (21 + 22)/2|.
201+ + (-3)+3(1—2i)+5(-6) 25 7.

2414345 11 11
3. -3 03 - Z

>
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|
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~
)
N
-
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5. The three side lengths are equal:

(44

2
(4+8)- (-9

6. The Pythagorean theorem is satisfied:
104+10=|(3+17) — 6+ |(3+12)—(4+ 4P =16—(4+ 44))* = 20

7. a. All points on the horizontal line through z = -2

b. All points on the circle of radius 3 with center at 1 —

1.
c. All points on the circle of radius 2 with center at =z

<

d. The points must be equidistant from 1 and —¢, thus lie on the
perpendicular bisector of the line through 1 and —:.

1 . .
e. The equation can be written as z = Zyz — 1. The points lie on
this parabola.

f. The points z have the property that their distance from 1 added
to their distance from —1 is always 7, so the points lie on an ellipse

with foci +1, with z intercepts :t-;— and y intercepts :l:-z-\/g

g. All points on the circle of radius -g— with center at %
h. All points in the half plane z > 4

i. All points inside the circle of radius 2 centered at :

j. All points outside the circle of radius 6 centered at the
origin



8. (a+b)—ll=a-1P+¥

(a P

9. |rz| = Ir(a + bi)| = |ra + rbi| = (r-a)2 + (rb)?
= /(@ + ) =rVa? + ¥ =l

12. a. (i‘-) = (ﬂ_ﬂ‘_‘) (@102 +b:bz) + (25 — a;bz)z)

22 az + bzl a2 + bg
(axaz + bibo) + (—az2by + arb)i
al + b3
—bi _ F

az—bzi-.-z'g"‘
z+.§—(a+bi)+(a"bi)—a—Rez
2 2 =a=

—?__(a+bi)-(a-bi)_
2% 2% =

b=Im=z




13.

14.
15.

16.

17.

18.

Z)?-22=0=(z-2)F+2)=0=

either: 7 — 2 = 0 => 2i/lmz = 0 = z is real, or
Z+ z =0 = 2Rez = 0 = z is pure imaginary.
|2122]? = (2122)(F1%2) = (21%0)(22%2) = |22 f?

By induction: The case when k = 0 is obvious. Assume (Z)™ =
for all positive integers m < k.

()= (@) = Fz==7

Also,

Let z = a + bi. Since |z]2 = a® + b* =1,

Re(r2) = e (o) =™ () -2

pu— — n—1 —
Zo + a1Zg +---+an_120+ an

n—-1 sl
=2 +a1zg +- o tanazot e, =0=0

—a; £ y/a? —4a,y

2

The roots of 22 + a1z + a; = 0 are z =

a? — 4a; > 0= Both roots are real
=> Each root is its own conjugate

af —4a; < 0= *y/a? — da; = £i\/4ay — a?

= The roots are complex conjugates.

| =10




19.

20.

The line ax+by=c can be represented in the complex plane as z=rcos6 +
irsin@ + c/a where 8= tan'(-a/b) and —oo < r < oo, By working with
triangles you can obtain
cosf = -b/N(a® + b) and sin6 = a/N(a® + b?). To get to point z write the
equation from point c/a down the line and make a turn on the
perpendicular as
z=x+y = rcos0 + irsin6 + c/a — ssinB +iscos® with —o < s < oo, Equating
the real and imaginary parts
X —c/a=rcosO — ssinB; y = rsind + scosO
Solve for s as s = ( — sinB(x-c/a) + ycos0) = (-ax + c- by)/\/(a2 + b2). The
distance from the point z to the line ax + by =c is s. Denote the reflected
point by z. The reflected point lies s units on the other side of the line.
zr=2z - 2s(-a — ib)HN(a® + b) = x + iy — 2{(-ax + c- by)N(a® + b?)}(-a —
ibyN(a® + b?)

={[(b* - a®)x —2aby + 2ac] + i[(a>-b%)y ~2abx + 2bc]}(a> + b?)

= [2ic + (b-ai)(x-iy)]/(b+ai)
(a) Suppose u'Au = 0 for all n by 1 column vectors with complex entries.
Let
u=[00... 1..0]" with the i® entry being the only nonzero entry. Then
u'Au = (az) = 0 for i=1 to n.
Let u be all zeros except for Y2 + iV3/2 On the ith row and Y% -iV3/2 on the

jthrow. Now

uAu = (ag) (V2 -iV3/2 ) + (a5)(%2 + IV3/2)* = <(1/2 - V3/2)(ay) - (%2 +

iN3/2)(a;) = 0.

21.

Setting the real and imaginary parts equal to zero yields a; = 0 and a;=0
for all i,j= 1 to n. Consequently A = 0.
(b) Let A=[01;-10]. Now u'Au =0 for all 2 by 1 real column vectors .

The matrix A is Hermitian A" = A. Observe (Au)’ =u' AT =u' A.

(a) (u" Au)'is the conjugate transpose of the matrix u' Au which is a one
by one matrix, so
(u" Aw)" =u’" ATu=u' Aubecause A is Hermitian. The conjugate is
equal to the number only when the number is real.

(b) (B'B)" = B'B and therefore is Hermitian.

(©) (u'B'Bu)' = (Bu)'(u'B")' = u'B'Bu a real number.



EXERCISES 1.3: Vectors and Polar Forms

1. a..z1+z2..—..3

-\



2. lzlzzzsl = |(2122)Z3| = |2122||23| = |z1||22] 23]

3. |21 + 22|2 + lZl - 22|2 = 2'21'2 + 2|22|2

4. By induction: The case when k = 0 is obvious. Assume |z™| = |z|™ for
all positive integers m < k.

|24 = |+

Also,

&
o
3
S

2
d. 1
6. a. o
]
7cis '35' f

=[5 Y|z] = |2 2] = |2*
1 = 1 = |z|7*
|25] )z
b.
1 2 3 4 5§ -5 =4 =3 =2 -1

S5 -1 -3 -2 -1
-1

-2
-3

-4

-5

|-13

- N W > ['d

=1

-2

-3

-4

-5




2 3 4 8 Tt -3 -2 -1 1 2 3 4 5

7. (Only the value of Argz is given for each of the following.)

1. . (3
a. Ecxsar b. 3v2cis gT)
c. Tcis (—1—;-) . d. 4cis (—_6{)
e. 2¢/3cis (T;') . 4cis (—-;-)

L ais (32) b, Yo (27)
& 12 "9 12

8. Suppose |z2] = r. Then z + 2 lies on the circle in the figure and
|21 + 23| is greatest when arg z; = arg 23

71 + 22
z1

9. Itis a vector of length |z| and angle of inclination arg z+¢; it is obtained
by rotating z by angle ¢ in the counterclockwise direction.



oc. arg(s12:25) = arg((z122)7a) = arg(s122)+arg 25 = arg 71 +a1g 2-+a1g 2

Job. argz17; = arg z; + argz; = arg z; — arg z;

1. (1 +1)(5-1i)*=V2 cis(ma)N(26)cis(-4tan™ (1/5)) = (1 + 1)(24 — i10)°
= (1 +1)(24° - 100 - i480) = 976 — i4
arg(1 +i)(5 - i)*) = n/4 — 4tan”' (1/5) = -tan"' (1/239)
/4 = 4tan’'(1/5) - tan”'(1/239).

fa. 5 37T
1
b. =
c. T
"3
i
d. -2

1 3. b and d always true

Counterexample for part a:
. 9 o7
A== CIS% = Argz1z; = —'ga Argz + Arg z, = 3

Counterexample for part c:

<1

) =7, Argz —Argz, = —nx
22

le—i, 22=i=Arg<

4. If 2 > 0 then tan™! (2) + g (1-1)=tan™ (%), which corresponds
x
to == < <Z
0 5 <argz 5"
-1(Y 7" -1(Y : -
If z < 0 then tan (—) + 5 (I14+1) = tan (—) + 7, which corre-
z z
ds to © T
sponds 05 <argz< 5
Ifz=0and y >0, then g(l) = argz.
Ifz=0and y <0, then %(—1) = arg z.
If 2 = y = 0 then arg z is undefined.
If y >0 then 1 - cos™!? (:c/\/:t2 + y2) corresponds to 0 < Arg z < .

If y <0 then — cos! (:z:/\/:z:2 + y2) corresponds to —7 < Arg z < 0.
Ify=0and:c>0then0=Argz.

y =S



Is.

e

17
‘e

JE-

13-

20.

|2y = 23| = |21 + (=22)| £ || + | = za] =_|21l + |24

Apply Exercise 15 twice:

lz1] = (21 — 22) + 22| < |71 — 22| + |2a| =

|z1} = |22] < |21 — 22

Similarly (beginning with |z|),

|za] = |z1] € |22 — 21] = |21 — 2l

Thus,

—|z1 — 2| < ;| = |72l S |l;1 = 2|, or

lz1] = 22|l < |21 = 22

If vector 2, is parallel to vector z;, then 2; = ¢z, for some real number
c # 0, and z)7; is real valued since 227 = cz 2.

Conversely if 2;7; is real valued,

arg z; — arg z; = arg(z1%) = kx, k=0,%1,%+2,... =

argz; = argz + kn = Vector z, is parallel to vector z.

By Example 1, the points 23, 21 and z lie on the same line if and only
if 2z — z; = d(z — z;), which is true if and only if z = z; + ¢(22 — 1),
where ¢ = —c. It follows that z lies strictly between z and 2, if and
onlyif0<e<l1.

2, = ¢z, with c real and ¢ > 0 <
argz = argc+argz; = 0+argz =arg2;

The triangle with vertices z), 22, and z3 has sides represented by the
vectors z3 — 21, Z3— 21, and 23 — 2. Let ¢ be the angle between 23 — 2
and z, — 2;. Then

¢ = arg(zs— z)—arg(zz — z)
- w(z22)
- & 22— 2

The result can now be recognized as the Law of Cosines.

\—1b



21. rycisb; + rocis @y = [ry cos by + 72 cos 0] + i[ry sin 6y + o sin 5]

= r? = [rjcosf + r2cos 05> + [r1sin 6; + 7o sin 02)?

r? 4 2ryry(cos 0y cos 8, + sin 6y sin 6) + r5
12 43 4 2rarscos(s — )
— r = \/rf + 12 + 2ry7; cos(6; — 62)

cosf — Re (rlas 6, —: rocis 02)

r, cos 8y + 4 cos 02
r2 4 r2 + 2ryr; cos(6; — 02)

ricis 0y + rocis 0,
m
r

sinf =

rysinf; + rosin 6,

\/g"‘ 7'% + 27’11‘2 COS(01 -_ 02)
0 — tan-! (r1 sin 8; + o sin 6, )

4 cos 0; + rp cos b,

when r; cos 8, + 5 cos 8, > 0.

See Exercise 14 to adjust 6 for the other cases.

22. By induction. The case when n = 2 is the standard triangle inequality.

Assume
m m
PENEOMEN
k=1 k=1

for all positive integers m < n. Then

n—1

E Ze + zZp

k=1

n—1

PIES

k=1
n-1 n

< S ekl + lzal = D |zl
k=1

k=1

+ |zn|

\-17]



m;z; + my23 + M3z

23.
m; +my +m3
| mzh | ma22 maz3
= |my+mat+msl lmy+ma+msl Imp+met+ms
my ms mg _

+
m1+m2+m3+m,+m2+m3 m; + my + m3

Physical interpretation: If three particles 21, 23, and z3 lie inside or on
the unit circle, then their center of mass also must be inside or on the
unit circle.

24. (See Exercise 14)
Input z,y
Stepl Set r =sqrt (z°2+y"2)
Step2Ifz <0and y =0, Set t = pi
Step3 Else Set t = sgn(y) * arccos(z/r)
Step4 Print “Polar coordinates are (r,t) =";(r,t)
Step5 Stop

Input r,t
Stepl Set z = r * cos(t), y = r * sin(t)
Step2 Print “Rectangular coordinates are (z,y) = "; (=, y)
Step3 Stop

25.

7,2, = (xx "i)’l)(xz +i)’2)= X)X, + y,y, + i(xl)’2 - yxxz)

Re (lez)= X\ X, + y,Y,

26. 2192, =xx,+y,y,=0=>y,/x, =1/(— Y /x,) and the vector z; is

orthog(?nal to z;. In other words z; leads z, /2 radians so z; = icz.
If z, = icz, for some real c,

303, = RC(ZIZZ)= Re(—ic(xz —iy, )(x, +iy, )'_' —CX, ¥, +¢x,y, =0
and z, is orthogonal to z,.
27. (@ Im(Z,z,)=Im((x, - iy, )(x, +iy,)) = x,y, =X, ¥,
(b) If z; and z;, are parallel z; = cz; = Im(z;2,) = cXay2-Xacy, =0
It Im(z,22) = 0, X1y2-X2y1 = 0 = X,/y| = Xo/ys = z; = cz, for some real c.



EXERCISES 1.4: The Complex Exponential

ot

7.

8.

9.

10.

vZ V2.

——-—-——z

2 2
b. €%
c. e ! cos(sin1) + i€ sin(sin 1)
a. sin3

b. V3 + €3

c. €2cos2v/3 + ie2sin2v/3

"\/_2-6—1'"/4
3

b. 16mwe=i2/3

c. 8¢37/2

ez2rr/3

2\/§ei1r/4

b = \/2e—iTr/12

2ei5T/[6
ir/2
o 272 ey
deter et
N
‘arg(e™*) = arg e’ = arge® + arg e = 0+ y + 2kw, k=0, %1, ...
sinf (e —e7®)/2i € _ e
> sl (e +e-®)/2 7 i(elf + =)
1 2 2e'"/2 2

b.

sinf el _ i — git _ 0  ¢il6-7/2) _ g-i(6+7/2)
e*t2m = eTHWHIM = elcos(y + 2r) + i sin(y + 27))]
= €°(cosy+ isiny) = Y = ¢*
a. €™ = e®[cos(y + 1) + isin(y + 7)) = —e*[cosy +isiny] =

b. € = e®cisy = e”(cosy — isin y)
= e”(cos(~y) + isin(—y))

= ez
(e*)" = (e*cisy)™ = e (cisy)"
= e™cisny
= en($+ty) e enz
- 1 1 -
(ez) R=W_E=e nz

z =2z + iy with z < 0. el =e*<e’ =1

| =19



11. a,c, and d are true. b is false because e*+?* = e*.

12. a. sin30 = Im(cos 30 + isin34) = Im(cos 8 + isin f)’
= Imlcos® @ + 3 cos® 8(isin §) + 3 cos (— sin §) — i sin® 6]
= 3cos’@sinf —sin®0
b. sin40 = Im(cos44 + isin46) = Im(cos § + i sin 0)*
= Im[cos* 0 + 4 cos® 0(isin #) + 6 cos® §(—sin® 6)
+ 4 008 §(—i sin® 0) + sin* §]
= 4co0s®fsinb — 4cosfsin®4

B _ -if)\2 i@ —if\ 2
13. a. sin?0 +cos’8 = (f_—2i_e—) + (e__—i-ie__)

= —i.(eiza —-24 6—520) + i_(eﬂﬁ +2+ e—i20) =1

e‘.(ol*‘oz) + e‘i(oi +‘2)
2

b. cos(6; +62) =

e't1ei% 4 e~ g—i02
2

_ (cosfy +isinb;)(cosb; +isinby)
B 2

+ [cos(—6,) + i sin(—6,)][cos(—b2) + 2 sin(—0.)]
2

= 00801 00803 - sin01 sin02,
since sin(—f) = —sin @ and cos(—0) = cos 6 .
14. Yes, because if n > 0 then
1
(cos @ + isin 6)"
1
cosnf + i sinnf

(cos@ +isin8)™ =




= cosnf —isinnb
= cos(—nb) + isin(—nb)

15.  a. e™e™ = €™ (cosy; + isiny; )e™*(cos y, + i sinys)
= €"e™(cosy; cos Y, — sin y; sin y, + ¢ cos y; sin y,
+ ¢siny; cosys) .
= €% (cos(yy + y2) + i sin(y; + Y2))

= At

e (cosy; +isiny;) cosys —isinys,
e*2(cosyz + 1siny,) cosy; — isiny,

e

b. — =
e?2

= €"e""(cos y; cos Y, + siny; siny, + i sin Y1 COS Y2

— t1cos y; sinyz)
— e:l:l —-z2 [COS(yl —_ yz) + iSin(yl - f‘/Z)]

Z1—-2z
el 2

16. exp(Inr +20) = "€ = re?? = 2

17. The standard parametrization of the unit circle traversed in the coun-
terclockwise direction is z = cost, y = sint for 0 < ¢ < 2w, which gives
z=cost+isint = e'.

a. The circle |z| = 3 traversed counterclockwise.
b. The circle |z — 7| = 2 traversed counterclockwise.
c. The upper half of the circle |z| = 2 traversed counterclockwise.

d. The circle |z — (2 — ¢)| = 3 traversed clockwise.

18. a.

100 200 300 200 50

ey



100 200 300 400 500

19. |e***i/*| =1, k=0,1,...,n — 1 = The vertices lie on the unit
circle.
|e2kxiln — g2k+1)7i/n| = |1 _ ¢2%i/"| —3 The n side lengths are equal.

20. (z=1)(14z2+22+---4+2")=2" -1
nt+l _

[— 2%



Suppose z = €%, § £ 0. Then

1+z+22+---+zn — 1+ei9+ei20+”_+ein€
= (14 cosf+cos20+---+ cosnb)
+ i(sin 6 +sin26 + - - - + sin nf)

and
2t ei(n+1)0 -1

z—1 ef —1
cos(n +1)6 — 1 +isin(n + 1)0 .
= 6—1-— 6
(cos@ —1)2 +sin? 6 (cos sinf)

cosnf — cos(n + 1)6 — cos 6 + 1

2—2cosb
3 iSin nd —sin(n + 1)8 + sin 6
2—2cosé
_ sin(n + 1/2)6 + sin /2 + z,sin(n +1)8/2sin(nb/2)
2sin6/2 sinf/2

a) follows by equating the real parts of both equations and b) follows
by equating the imaginary parts.
1—-27

1—-2

21. ’

_ |1 =(cos@ +isin)"
" | 1—(cos@ +isinb)

_ (1 = cosn8) + i(sin nd)
" | (1=cosf)+i(sinb)

_ (1—cosn0)2+sin2n0_ 2 —2cosné
- \ (1 —cos)?+sin’d ~ | 2—2cosf

(1—cosnf)/2 _ |sin*(nf/2) |sin(n6/2)
B \ (1—cos8)/2 ~ \ sin®(6/2) ~ |sin(6/2)

On the other hand,

1—2" 2 n—1
l =14+z+22 4+ +2"Y<141414---+1=n.

1—-2

|- 23



22.

23

2r 2

Iei"adﬁ = Ie°d9 =271, for -n=0
0 0

2r

je’“d& =e?™ -1=0, for n#0

0

T T i =i 1 Yt i(8-2m
(a) ojcoss(e)w: Oj((e"+e 9)/2)8d9=(—2§) szfn=0(c,§,)e(8 49

= 351/64

2 2 ,i20 _ ,-i20 \°
(b) f sin®(26)d6 = j(——z——J de =-2002m)/(i2)° =518
0 0 !
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EXERCISES 1.5: Powers and Roots

1. By induction: The case when n =1 is obvious. Assume

2™ = r™(cos mf + i sin m0) fot all positive integers m < n.

n n-1 ru—l[(ws(n —1)0 + isin(n — 1)0)][r(cos 6 + isin 0)]

N
]
N
~
i

= r*[cos(n — 1)0 cos — sin(n — 1)fsin 6
+ isin(n — 1)0 cos § + i sin § cos(n — 1)]
= r"(cosnf + isinnf)

2. Let m be a positive integer. Then

-m 1
™™ = —
zm
_ 1
~ rm(cosmb + isinm@)

= ;lg(cos m0 — isinmd)

= r~™(cos(—m0) + isin(—m#f))

3. By induction: The case when n = 1 is obvious. Assume arg(z™) =

mArg z + 2kx, k = 0,%1,. .. for all positive integers m < n.

arg(z") = arg(z""'z) = arg(z"™') targz
= (n—1)Argz +argz+ 2kn

= nArgz+ 2kx
= = Vv3 1
—3\7 7 —— e | = i A —
4. a (V3-i)'=2 (cos 5 + isin 6) 2 ( 3 +2z)
= —64v/3 + 64i

b. (1+4)% = (V2)* (cosg"i’i+;sin354l)

- 2 (75 - g5) =279

|-2 5§



o

o

.\ /8 4+ 2k
£ ( 2 ) = (1466 = ¥Zexp (z”—/—+—”

(—16)1/4 = 2exp (i” + 2kn

),k=0,1,2,3

1/5 = exp (1-2?) k=0,1,2,3,4

2 + 2k
/4 = exp (11/-—1'—-71) L k=0,1,2,3

—7/3 + 2k
3

(1 —/3i)13 = 2exp (z———), k=0,1,2

(s — 1)1/2 — {/Q'exp (zw), k=0,1

2

1+ 6

),k=0,1,2,3,4,5

6. In each case one can find a root w, then construct the others as vertices
of a regular pentagon inscribed in the circle |z| = |w| by marking off

arcs of length |w|-5l

a.
b.

C.

Lz=1++/1—-1=1x21/4 (cos%—-isin—)

One root is —1.

One root is /10,

One root is 21/10¢i/20,

e

8

8. From the quadratic formula the two solutions

—b+ V/b? — 4ac
2a

Z =

are distinct and real when 5 — 4ac > 0. When b? — 4ac < 0,

V% — dac = i,/—(b® — 4ac) so the solutions are non-real complex con-

jugates.

l-26



10.

11.

12.

13.

14.

Notethatz“—3z’+6z—4=(z—l)(z’—2z+4),z=1,1:i:i\/3-'

z= (-1 =exp (i’r +42k1r ,k=0,1,2,3

(z — e=i)(z — T /4) = 22 — 2z +1 (k=0,3)
(z — eB/Y)(z — eG=/4V) = 2% 4 V2z+1 (k=1,2)
(z+1)®
25
k=0,1,2,3,4. Therefore z =

1\° _
= (l-{-;) =1 #1.{.% =ql/5 = w, where w = e(2k1r/5):,

1 S E=1,2,3,4

z},’" = |zo|'/" exp (iﬁ’_'%g.’ﬁ), k=0,1,...,n— 1, where §p = Arg 2.

For each k, zi/ is the constant distance |2o|'/* from the origin, and the
difference in the arguments of zé’ ™ for consecutive k is the constant -;:-r-

Hence the n points zél ™ are equally spaced on the circle |z| = |zo*/™.

1, .v/3

— 23 — __ 4 X
ws =€ 3 1t13

1+w3+w§=1+(-—%+il/2—§)+(—l—il/—§) =0

wy = e/ =4
14w+ +wi=1+i+(-1)+ (=) =0.

(zm)l/n= (lzlmeima)l/n, 0= arg z

= |z|™"exp i (Te—:—zi’r-) , k=0,1,...,n-1
= |z|™/"expi (ﬂ%k—mz) since m and n are relatively prime

= ot exp m (L2 ) @

|- L)



. 0 + 2167!‘ m m
— 1/n = 1/n
= (Izl exp z( ~ )) (z )

Expanding (*) gives
2™ = |z <cos %1-(0 + 2kx) + isin %(9 + 2k7r)) , k=0,1,...,n—"

15. (1 _ i)3/2= (\/5)3/26(3i/2)(-1r/4+2k1r), k= 0,1

= 23/4ei(—37r/8+3k1r), k= 0’ 1

16.  @z+1)'P=(@-1)'P = (2+1) = (2-1)¥™'° = 2(1-™1%) = _(14™'9)
7= (e2itki/100 +1) /(eznki/xoo_l)=( k100 e-nki/lOO) i Tki/100 _ enki/lOO)

z = -icos(nk/100)/sin(mk/100) for k= 0,1,...,99. Because the cos and sin
functions of a real variable are real z will have zero real part.

17. (Use Exercise 20 from Section 1.4)

ml __
1+wf;1+w,2,f+---+w,(n""l)£=wm 1=O
Wy — 1

18. Let k = mn. Then
(Q,B)k — (aﬂ)mn — amnﬁmn — (an)m(bm)n =1m1" = 1.
19. (a) F(Z) = (1/|Z _ zOl)eiarg(z—zo) = (1/|Z _ zOle_—mg(z_ZO))= 1/(Z - Zo)

(b) Solve z,; = 1+, Zo2 = -1+, Zo3=0
Wz —201) + 1/(Z—202) + 1/2=0 =z = (N2 + 20)/3

|- 23



&0,

21.

EXERCISES 1.6: Planar Sets
1. Let z;, be in the neighborhood |z —

Choose a point w in

. Define subroutines called sum, diff, prod, and quot based on exercise 31,

section 1.1. Also define subroutines called polar and rectangular based
on exercise 24, section 1.3. Define compsqrt(z,y) as follows:

Input z,y

Set (r,t)=polar(z,y)

Set newr=sqrt(r), newt=t/2

Set (newz, newy)=rectangular(newr,newt)

Output (newz, newy)

Stop

Now the quadratic formula program can be written.

Input ar, at, br, b, cr,
Set (discrim r, discrim ¢) = prod(br, bi, br, bi )—4 * prod (ar, ai, cr, ct)
Set (toprootr, toprooti)=compsqrt(discrimr, discrims)
Set (z1r, z1i)=quot(—br + toprootr, —bi + toprooti, 2 * ar, 2 * ai)
Set (22r, 22t)=quot(—br — toprootr, —bi — toprooti, 2 * ar, 2 * ai)
Print “One solution is (z,y) ="; (21r, z1:); “which is (r,t) =";
polar (z1r, z1s)
Print “The other solution is (z,y) =";(22r, 22¢); “which is (r,t) =";
polar(z2r, 22t)
Stop

(a) £(3+1) (b) £(3+2i)  (c) £(5+i)
(d) £(2-1) (e) 2(1+31)  (f) £(3-1)

zo|<pand1etR=p—\z1-zoL
|z — | < R. Then

= ‘20—-21""31"""’!
< lao—2a|+lan—wl
< lo—al+R=p

|20 — wl

80 z, is an interior pont of |z— 20| < p and the neighborhood is an open

- get.



b. |Argz| < 7 /4

cadz—(1-1)] <3

-30



W

10.

11.
12.

13.

. b, f
4. b, c
5.
6

a,c
a |z—(1-4)|=3

b. z =re™/4 and z = re="*/*

c.z=2and |z—-2|=3

d. 2=z +tand z=z—1 for all real =

e |z|=2

f 2=1+iyand z2=-1+iyforallrealy
a,b,cde
a, e

The set S = {z1,2,,...,2,} is bounded by the neighborhood lz| < p,
where p > max |z}, j =1,2,...,n.

Let po = |zo| and choose R > p + po. Then for z in |z — 20| < p

lzl = |z — 20+ 20| < |z — 20|+ |2l
< p+p <R

Su {0}

Since zp is not an interior point, every nighborhood of 2, contains at
least one point not in S. At the same time, every neighborhood of z
contains zo, which is in S. Thus 2 is a boundary point of S.

S is closed <=

S contains all of its boundary points. <=

No point of C \ S is a boundary point. <=

zoin C\ S implies that there exists a disk |z2—2| < € SC\S. =
C\ S is open.

-2\



14.

16.

17.

18.

19.

By contradiction: Suppose z, is an accumulation point of S but that
zo belongs to C \ S. Then 2, is a boundary point of S since each of
its neighborhoods contains points in S. Because S is closed, zg is in

SNC\S#D0.

~ ===
)/\ 7 /7 /\\\
//)/\ / LA
{ / \ {
:F/ ,///L ! - o ////}l
/////// ‘ /
/ \ oy

/ \ 7

/ N L

L ) SuT S~ “ ST

Suppose zp is in SUT. If 25 is in S, then there is a neighborhood
|z — 20| < p that is contained in S, thus it is contained in S U T.
Likewise if zo is in T there is a neighborhood |z — zo| < p, (in T') that
is contained in S U T. Hence 2, is an interior point of 3 U T.

No. Counterexample:
S:1<2]<3
T: -1<Imz<1

SN T is not connected.

SUT is open (by Exercise 16). To show that S U T is connected, let
Zo, z1, and z be points in S, T, and S N T, respectively. Then z, and
z can be joined by a polygonal path in S. Likewise z and z; can be
joined by a polygonal path in T. Therefore zy and z; can be joined by
a polygonal pathin SUT.

% = Z—Z = 0in {z : |z] < 1} because u is constant there and in
{2z : |z| > 2} because u is constant there. Thus — Ou g: = 0in D.
T

Theorem 1 is not contradicted because D is not connected.

20. Ié:t v(:g,uy) = u(z,y) — ag:, at all points of D. Then

dz

" Oz

y=0and — = — —~

% -5 z = 0. By Theorem 1, v(z,y) = c,

a constant. Thus, u(z, y) zy+ec

| -32



21. nix,y) = log(x2 + y2) + C where C is a constant.

2} Let £ be a line segment belonging to a polygonal path connecting two
points in D. Let z; = z; + iyx for k = 1,2,3,..., K be the centers
of open disks D, in D that cover £. Let z; = z} + ¢y, be any point
in Dg N Diyy. Then the vertical segment from zx + tyx to zi + iy;
is in Dy, the horizontal segment from z; + iy} to z} + iy} is in Dy,
the vertical line segment from z} + iy} to zi + iYk41 is in Dyyy, and
the horizontal line segment from z} + tyx41 t0 Tigr + tYr4a is in Dyy,y.
Thus, the line segment from z; + ty to Zx41 +iyr4+1 can be replaced by
these horizontal and vertical segments without leaving Dy U D4y (and
without leaving D). In this manner one can replace £ by horizontal
and vertical line segments lying in D, and one can replace the entire
polygonal path connecting the pair of points by horizontal and vertical
line segments lying in D.

xk+1 +iyk+1
’v Dk+1

| =33



23.  (a) The set is a continuum.
(b) The set is not a continuum.
(c) The set is not a continuum.
(d) The set is a continuum.

24, a. If 2o+ 1y and z, + iy, are the endpoints of the line segment then
T = (21 — To)t + To, ¥ = (¥1 — Yo)t + Yo is such a parametrization.
dU  Oudz Oudy

"dt 9z dt | dydt
¢. Any two points 2, z; in D are connected by a polygonal path
lying in D. u is constant on each line segment in this path, so u

is constant on the path, and u(z1,y1) = u(zs,12).

=0'($1—$0)+0‘(y1—y0)=0.
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Exercises 1.7

1.

(a) 1= (xl, X2, X3)= (09 19 0)
(b) 6 — 8i = (x1, X2, x3)= (12/101, -16/101, 99/101)
(b) -3/10 +21/5 = (x), X2, X3) = (-12/25, 16/25, -3/5)
(a) z = x+y = (X1, X2, X3) =

2x/(x* + y* +1), 2y/(x2 + y* + 1), (% + y2- DI+ y7 + 1)]

Lz * = x/(x* +y") + iyl(x* +¥?) = (%1, %0, %3) =

2x/(x* +y* +1), 2/ + ¥* + 1),(1 - X* - Y/ + y* + 1)]

(Xn1, XNz, X03) = (X1, X2, -X3)
(b) =1/z = (xx1, XX2, XX3) = (-X1, -X2, -X3)

dist(Z,W) = 2Iz +1/zIN(1+zF)N(1 + 11/z) = 2
Z = (x1, X2, X3), W = (W1, Wz, wi) and (0, 0, 0) define a great circle because the
distance from the point Z and O is unity. The great circle through Z and 0
must pass through —1/z as shown in Problem 2. Example 2 showed that all
lines and circles in the z-plane correspond to circles on the Riemann sphere.
In Problem 10 below it will be shown that circles on the Riemann sphere
correspond to lines or circles in the z-plane. Therefore, the great circle
corresponds to a line or circle in the z-plane that goes through points z, -1/z,
w, -1/w.
The points w and —1/w correspond to many great circles that goes through W
and the center of the Riemann sphere. One of these great circles also passes
through the points z and —1/z.

(a) The hemisphere x;> 0.
(b) The bowl x3< -3/5
(c) The slice 0<x3<3/5

(d) The dome 0.8<x3

(e) The great circle x; = X, 12x32-1 or longitude 45° and Jor.gitude 225° .
The point Z is away from the x3 axis a distance

{[2x/(1+zP) P+ [2y/(1+HzIP?} 5 = 21zi(1+1zP).

The right triangle formed by x3 =1 (the point =) and Z and back to the x3 axis
is similar to the right triangle formed by x3 =1 and the points z and 0 in the z-
plane. This gives the ratio of sides: ¥[z,eo]/N(1+z1%) = {2Izl/(1+1z)}/Iz.
Solving yields y[z,00] = 2/\(1+zP).

See Figure 1.21. Iz-wl s related to the triangle x3=1,z,w by

lz-wl = 1+izP +1+wl* - 2N(1+zP)N(1+wlP)cosa.

coso = [2+zP+HwP- lz-wP)/[2V(1+zP)N(1+wP)]

* In these solutions the complex conjugate of z is indicated by z.

Applying the law of cosines again yields
1Z-WP = QN (1+zP))?+ A (1+wR)? =2{ @)/[2Y(1+zPN(1+IwP)] } cosa

Using the solution for cos o in this equation gives
1Z-WI = 2lz-wiN(1+zPWV(1+wP).



9.

y[z,w] = 2lz-wi[N(1+zP)V (1 +Hwl)].
x[1/2,1/w] = 211/z-1WVN(A+11zPN(1+1/wi?)]

= 2(Iw-zVIzlwl/[N(IzP+ DV (IwP+1)/1zliwl]

= 2(w-zl)/[N(zP+ DN (wP+1)] = y[z,w]

x[-z,-w] = x[z,w] Because the projection of —1/z is on the diameter starting at
Z and the projection of —1/w is on the diameter starting at W, x[-1/z,-1/w] =
xlz.w] = x[1/z,1/w].

The chords y[z1,w], %[z2,w] and ¥[z,,2;] form a triangle. The triangle
inequality (11) holds.

10. A circle on the Riemann sphere satisfies the equations

x12 + xz2 + X32 =1 and Ax; + Bx; + Cx3 +D =0.

2xA/(1+z1%) + 2yB/(1+1zP) (1z*-1)C/(1+z1%) + D =0
2AX + 2By + (x> +y = DC + (14x*+y*)D =0
(C+D)(x* + y*) + 2Ax + 2By +D-C =0
Let a=C+D, ¢ = 2A, d = 2B and e = D-C lets you write
a(x> +y%) +cx + dy + e =0, an equation for a line or circle in the xy plane.
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